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SUMMARY

Design of a control law for simultaneously suppressing the symmetric and
antisymmetric flutter modes of a sting mounted fixed-in-roll aeroelastic wind-tunnel model

is described. The flutter suppression control law was designed using linear quadratic

Gaussian theory, and involved control law order reduction, a gain root-locus study and use
of previous experimental results. A 23% increase in the open-loop flutter dynamic pressure
was demonstrated during the wind-tunnel test. Rapid roll maneuvers at 11% above the
symmetric flutter boundary were also performed when the model was in a free-to-roll
configuration.

INTRODUCTION

A summary of the Active Flexible Wing (AFW) Program is presented in Ref. 1. Within

the operating range of the Langley Research Center Transonic Dynamics Tunnel, the sting
mounted AFW aeroelastic model had both symmetric and antisymmetric flutter modes, in a
fixed-in-roll configuration, and a symmetric flutter mode only, when the model was in a

free-to-roll configuration. The active flutter suppression system (FSS) test goals were to
demonstrate: a) simultaneous symmetric and antisymmetric flutter suppression for the
fixed-in-roll configuration, and b) symmetric flutter suppression in the free-to-roll

configuration. An additional goal was to test a rolling maneuver load alleviation system
along with the FSS above the open-loop flutter boundary. Since the free-to-roll symmetric
flutter and the fixed-in-roll symmetric and antisymmetric flutter modes had very similar
characteristics, a single FSS control law was designed and demonstrated for both the flutter
test configurations, a) and b) as stated above. This paper addresses the mathematical
modeling, control law design and wind-tunnel test results.

NOMENCLATURE

A,B
C,D
Bo

Co
E
F,G
Gw

g
H

control law state-space matrices
control law output matrices
Kalman state estimator gain matrix

optimal regulator gain matrix

expectation operator
plant state-space matrices

gust input matrix
gravitational acceleration constant
sensor output matrix
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I identity matrix
M Mach number
p estimator Riccati equation solution

q dynamic pressure, psf
qf flutter dynamic pressure, psf
Q1 plant output weighting matrix

Q2 control input weighting matrix
Rv measurement noise intensity matrix
Rw gust input noise intensity
S regulator Riccati equation solution
s Laplace variable
T sample period, seconds
t time, seconds
u control input vector
v measurement noise vector

w gust input noise

to frequency, radians/second

x plant state vector
Xc control law state vector
y measurement vector

accelerometer output, g's

control surface angular position, degrees

_ubscripts:
LEI wing leading edge inboard
LEO wing leading edge outboard

TEl wing trailing edge inboard
TEO wing trailing edge outboard

tip wing tip

AFW active flexible wing
CL closed loop
CPE controller performance evaluation
FSS flutter suppression system

LQG linear quadratic Gaussian

OL open loop
psf pounds per square foot
RMLA rolling maneuver load alleviation
rms root mean square
SISO single-input single-output

AFW EQUATIONS OF MOTION

The description of the AFW aeroelastic wind-tunnel model and the wing-tip ballast
stores, including details of the accelerometer sensor positions and multiple control surface
actuation capabilities, are provided in Ref. 2. The accelerometer sensors and the control
surface locations on the wing-plan form are shown in figure 1. The development of the
aeroelastic equations of motion is described in Ref. 3. The equations for the symmetric and

antisymmetric motion were developed separately, using ten flexible modes for each

136



configuration. The flexible mode shapes and natural frequencies were derived from a finite-
element modal analysis and were corrected using ground vibration test data.

State-space Equations

A set of state-space mathematical models were developed 3 for control law design. For
the aeroelastic equations, the doublet-lattice oscillatory aerodynamics approximation used
four aerodynamic lag terms for each flexible mode. In addition, the state-space models
included corrections for control surface effectiveness based on results from the 1989 wind-

tunnel test 2, and the third-order transfer functions of the actuator dynamics derived from

ground test of the unloaded control surfaces. A Dryden gust spectrum transfer function,
driven by a white noise process, was used to simulate the random vertical gust of the wind-
tunnel. The complete linear equations of motion at a specified dynamic pressure were
expressed by the state-space equations,

and dx/dt = Fx + Gu + Gww (1)
y = Hx+ v (2)

where x is the state vector, u is the control input vector, w is the gust input noise, y is the
accelerometer sensor output vector, and v is the measurement noise vector, uations 1)
and (2) were scaled such that the units of the control inputs were in degrees,Eq_ (
sensor outputs e units f thewere in g's, and the gust input unit was in feet/second.

Open-loop Dynamic Pressure Root-locus

Using these state-space mathematical models at six dynamic pressures, q = 100, 150,
200, 250, 300 and 350 psf, the flexible-mode root-loci with dynamic pressure were

studied. The open-loop, dynamic pressure root-locus of the first four flexible symmetric
and antisymmetric modes, for the fixed-in-roll configuration, are shown in figures 2 and 3,
respectively. The figures 2 and 3 indicate that the second and third flexible mode

frequencies coalesced to produce the flutter instability. The unstable mode was primarily
wing-tip torsion, for both the symmetric and the antisymmetric motions. The sixth and

seventh symmetric flexible mode frequencies also tended to coalesce (not shown in figure
2). At Mach 0.5, the analytical open-loop symmetric flutter dynamic pressure was

estimated to be 248 psf at 11.2 Hz. The analytical open-loop antisymmetric flutter dynamic
pressure was estimated to be 233 psf at 10.9 Hz. The closed-loop dynamic-pressure root-
locus is also shown in figures 2 and 3 and will be discussed later.

CONTROL LAW DESIGN

The flutter suppression design objective was to develop low-order robust digital control
laws which would simultaneously suppress the symmetric and antisymmetric flutter modes

of the model in the fixed-in-roll configuration with allowable control surface activity. The
maximum permissible control surface rms deflection and rates were 1.0 degree (at 11.2 Hz
flutter frequency) and 75 degrees/second, respectively. From the 1989 test 2 the

antisymmetric flutter frequency was known to be 1.8 Hz below the analyticai value. The
control law was also required to be sufficiently robust to compensate for this difference.
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TheFSScontrollawsweredesignedusinglinearquadraticGaussian(LQG) theoryand
involvedcontrollaw orderreduction,againroot-locusstudy,anduseof previous
experimentalresults2. Sincethesymmetricandantisymmetricflutter modeshadvery
similarcharacteristicsfor thefixed-in-rollconfiguration(seefigures2 and3), asingleFSS
controllaw wasdesignedto suppressboththeflutter modes.Thiscontrollaw usedthe_tip
pair of accelerometersandtheTEO pairof controlsurfacesontheright andleft wings.The
blockdiagramfor digital implementation2of thesymmetricandantisymmetricFSScontrol
lawsis shownin Figure4. Theaccelerometeroutputsfrom theleft andrightwing were
passedthrough 25Hz first-order antialiasing filters, modeled by the transfer function
157/(s+157) and converted into digital data at a sampling rate of 200 Hz. The digital
controller separated the data into symmetric and antisymmetric components, computed the

digital control law outputs and then distributed the processed feedback signals to the right
and left actuators after 0.005 seconds computational delay.

Design Plant Model

The 68th order antisymmetric state-space equation at q = 350 psf for the fixed-in-roll

configuration was used as the design plant model, since from the analysis and the 1989
test, the antisymmetric flutter mode was found to be most critical and was encountered at a
lower dynamic pressure than the symmetric flutter mode. The accelerometer sensors and
control surfaces were selected based on the frequency response analysis of the open-loop

system. The _'TEOand _tip accelerometer responses were predominant at the wing-tip
torsion frequencies due to the excitation from TEl and TEO control surfaces. In addition,

the _tip sensor exhibited relatively low response at frequencies above 25 Hz. Therefore,

_'TEO and _tip accelerometer sensors and TEl and TEO control surfaces were initially studied
as candidates for measurement inputs and control outputs, respectively.

Full-order LQG Design

A full order LQG control law was designed using the design plant model state-space

equations (1) and (2). The full-order LQG control law which is given by equations (3) and

(4), minimizes a weighted quadratic cost function defined by E[yTQIy + uTQ2 u], where Q1

and Q2 are the plant output and control input weighting matrices 4,5.

dxc/dt = Aoxc + Boy, (3)
u = Coxc, (4)

where

Ao = IF- Boll + GCo]

Bo = pHTRv -1

Co = - Q2 -IGTS.

The matrices Bo and Co are the Kalman state estimator gains and the full-state optimal

regulator gains, respectively. The matrices P and S are the positive definite solution of the

steady state dual matrix Riccati equations, given by

FP + PF T + GwRwGw T - pHTRv- II-IP = 0

SF + FTs + HTQ1H - SGQ2-1GTS = 0,
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where Rw and Rv denote the intensity matrices of the gust input and measurement

Gaussian white noise processes, w and v, respectively. To obtain the LQG control law,
full-state optimal regulator gain matrix Co was fh'st determined using a unit output
weighting matrix, Q1 = I, and a control weighting matrix Q2 = 0.001 I, where I is a 2x2

identity matrix. Then the Kalman state estimator gain matrix Bo was determined using Rw
= 0 and Rv = I. The final selection of these weighting and noise intensity matrices for the
full order control law, and the subsequent order reduction process were determined after

several design iterations, until a stabilizing low order controller was found for the nominal
design plant model. The control law order reduction process is described next.

Order Reduction

The full 68th order LQG control law given by equations (3) and (4) was first block-

diagonalized, and then reduced to 11th order by residualization of all the damped modes

above 19 Hz. Equations (3) and (4), in block-diagonalized form, are shown in equations (5)
and (6), where the vector xcl represents the retained states and the vector Xc2 represents the
remaining states associated with the damped higher frequency dynamics.

&-[xc2J= A°2J[xc2J +L o2-1 y (5)

c .1;xo1 
u =[Col oza[xc2j (6)

In the residualization procedure, only the steady state part of the stable higher frequency
dynamics in equation (5) were retained. This was accomplished by setting the state

derivative dxc2/dt to zero and solving for Xc2, provided the matrix Ao2 is nonsingular 4.
The reduced state space model of the control law is given by equations (7) and (8).

dxc/dt = A Xc + B y (7)

u = Cxc+Dy (8)where

Xc = Xcl, B = Bol , C = Col

and D = - Co2 Ao2-1 Bo2.

This procedure introduced a direct feedthrough matrix D in equation (8). The
residualized 11 th-order control law was subsequently reduced to a second-order control
law by balanced realization and truncation of the balanced system. The balanced realization

procedure finds a linear transformation in which the control law states have equal

controllability and observability properties 4. The weakly controllable and observable states

are then truncated. Even with the elimination of these states, the resulting set of equations
retained the most important input-output characteristics of the original system. This second-
order, two-input two-output control law, is given by equations (9) and (10).

646 i,  ,95jf 1dt - 64.6 -5.2 xc + -0.45 -0.73 (9)

-0.4 -0.06
3.6

2.1 -0.09]f.'._.ol
-9.4]xc + [ 0.13 0.21 J[7'tip j (10)
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ThecorrespondingBodediagramsof thefour componentsof this2x2controllaw are
shownin Figure5.This figureindicatesthatthemaximumgainof thiscontrollaw was2.5
deg/g(8 dB) with apeakgainat 10.3Hz.Theprimarystabilizinggainof thiscontrollaw
wasfrom thesensor_ip to thecontrolsurface_'rEO.Althoughthiscontrollaw stabilized
thesymmetricandantisymmetricplantmodelsat350psf, thestepresponsescontained
highfrequencvcomponents.With theadditionof 25Hz antialiasingfilters to each
accelerometerchannel,thehighfrequencycomponentsof thestepresponseswere
eliminated.However,with theadditionof T----0.005secondcomputationaldelay( modeled
by thefirst-orderPadeapproximation(2/T-s)/(2/T+s)),thesystemwasmarginallystable.
It wasalsonotedthat,whenthiscontrollaw wasreducedto asingle-inputsingle-output
(SISO)controllaw by retainingonly thecontrollaw input _tipandtheoutput_rrEo.the
nominaldesignplantwasalsostable.This simplifiedSISOcontrollaw wastherefore,
studiedfurtherin orderto compensatefor thecomputationaldelayeffects,andpossible
uncertaintyin theactualflutter frequencies, as mentioned earlier.

SISO Control Law

This simplified SISO control law (plot labeled by _3/_fip, in figure 5) was improved

further via gain augmentation. The required gain level was determined using a gain root-
locus analysis. The output gain feedback root-locus of the design plant model at 350 psf,

as plant in ut, and ztio as plant output, is shown in figure 6. This root-locus
with _q_EO the ope_-loop unstable pole (mode 3) near 11 Hz migrated into the stable leftindicated that

half plane, with a negative feedback gain of 1.3 deg/g from Ztip to _TEO- However, the
gain of 0.75 deg/g. Therefore, a gain level

actuator poles near 50 Hz become unstable at a
of at least 1.3 deg/g in the 8 to 12 Hz frequency range, with subsequent gain attenuauon at

higher frequencies, was necessary to stabilize the system, and accommodate the possible
difference between the analytical and experimental flutter frequencies. In addition,

compensation for the phase lag effects of the antialiasing filter and one cycle computational
delay was also required. The total phase lag introduced by these two effects was about 40

degrees at the frequency 10 Hz.

and phase compensations were achieved by varying the three elements of C
The gain SISO control law, and studying the gain and phase diagrams and the closedand D in the

loop stability responses. An increase in C1 and decrease in IC21 resulted in a desirable phase
increase at low frequencies. An increase in D reduced the phase (towards zero) at high

frequencies, which was also beneficial. These three parameters were varied, until a gain-
level near 1.3 deg/g (2.3 dB) was maintained over the frequency range 8 to 12 Hz, and

sufficient phase lead was obtained. The real part of the control law complex pole was also
moved from - 5.2 to - 6.0 to achieve a wider gain range. The high frequency gam was

kept below 0.75 deg/g. This modified SISO control law is given by equations (11) and

(12), assuming negative feedback.

dxc _I--6.0 64.6] I 1"95 _'" (11)dt -64.6 --6.0J xc + -0.73J Ztip

_TEO = [ 14.4 --3.1]xc + 0.63 Ztip (12)
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Thecorrespondinggainandphaseplotsareshownin figure5 andarelabeled8,rEo/_tip
(SISO).Thecomplexpolesandzerosof thiscontrollaw were-6_64.6 and-30+_j56,
respectively.A second-ordernotchfilter, givenby thetransferfunction(s2+42s+44100)/
(s2+84+44100),wasaddedto increasethesymmetricmodelgainmarginto 6 dB, near33
Hz. This filter attenuateda 33Hzlightly dampedoscillationdueto theinteractionof the
sixthandseventhsymmetricflexiblemodes.A first-orderwashoutfilter, givenby the
transferfunctions/(s+6),wasalsoaddedtoremoveanysteadystateinputbiasto thesensor
signal.

Discretization. The resulting 5th order SISO control law in Laplace domain was

discretized using the Tustin transformation z = (l+sT/2)/(1-sT/2), where T is the sampling
interval. For the 200 Hz sampling rate used by the digital controller, T = 0.005 seconds.

With the Tustin transformation at this sampling rate, the Bode diagrams in the Laplace

domain and the discrete domain were almost identical below 15 Hz. Hence no frequency
warping corrections were applied.

Dynamic-pressure root-locus: The open- and closed-loop dynamic pressure root-locus
plots are compared in figures 2 and 3. These comparisons indicated that both the symmetric
and antisymmelric models were stable, up to dynamic pressure q = 350 psf. The closed-
loop frequency decoupling was due to lowering of the frequency of mode 2 to about 6.8

Hz. The frequency of mode 3 was increased to 11.6 Hz, but the damping ratio was only of
the order 0.010 at 300 psf.

Sensitivity studies. The closed-loop system sensitivity was studied by perturbing the

second and third modal frequencies in the state-space block-diagonalized plant model by
+10% and the nominal gains by +4 dB at q = 250 psf and examining the closed-loop
system step responses, for all possible combinations. These studies indicated that the

design could accommodate simultaneous gain and frequency changes for all cases except
when the second and third mode frequencies were perturbed to approach each other.
Sensitivity studies were also done using the state-space model with and without the 25 Hz

antialiasing filters, with and without one cycle delay, with additional delays, and with + 6
dB gain perturbations at 250 psf. These studies indicated that the symmetric configurat]-on
could tolerate one additional delay (or phase lag of 1.8 degrees/Hz) at half the nominal
gain, but the antisymmetric configuration would become unstable with an 11 Hz

oscillation. The phase and gain margin comparisons with the experimental results,
described in the next section, indicated that this particular situation may have been
encountered during the experiment. The gain loss was apparent from the experimental Bode
diagram.

SUMMARY OF TEST RESULTS

Open-loop Flutter. Based on examination of the peak-hold data obtained during the wind
tunnel test with the tip ballast store coupled, the open-loop (OL) flutter dynamic pressures
were as follows: The free-to-roll OL symmetric flutter was at a dynamic pressure of 235
psf, at a frequency of 9.6 Hz. The fixed-in-roll OL antisymmetric flutter was at a dynamic
pressure of 219 psf, at a frequency of 9.1 Hz. These experimental symmetric and

antisymmetric OL flutter dynamic pressures were, respectively, 13 and 14 psf below the
predicted values, and the flutter frequencies were, respectively, 1.6 Hz and 1.8 Hz below
the predicted values.
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Open-loop frequency responses. Figures 7 and 8 show the OL frequency responses of

z-tip, due to _'rEo from analysis and experiment at 250 psf, for the symmetric and
anusymmetric (fixed-in-roll) cases, respectively. At this dynamic pressure, the OL plant is
unstable. So, the OL frequency responses were computed from closed-loop (CL)

experimental data, using the Controller Performance Evaluation (CPE 6,7) procedure.
Figure 7 indicates good agreement below 9 Hz and qualitative agreement above 12 Hz.
Above 12 Hz, the magnitudes differ by about 5 dB while the phase angles are nearly equal.

Figure 8 indicates fair agreement, below 7 Hz, and qualitative agreement above 12 Hz.
Above 12 Hz, the magnitudes differ by 6 to 8 dB and the phase angles differ by 10 to 20

degrees. Note, that for each phase diagram, the 180 degree crossing occurs near the
respective OL flutter frequencies, and the difference between their predicted and

experimental values is quite apparent.

Closed-loop Tests

The active flutter suppression test results are summarized in figures 9 through 13.

Figures 9 and 10 show the wind-tunnel test dynamic pressures versus the free stream Mach
number. During the wind-tunnel test, in the fixed-in-roll configuration, with both the
symmetric and antisymmetfic FSS control laws operating, the CL system was stable up to

q = 270 psf, at Mach 0.46. This augmented q represents a 23% increase over the OL

antisymmetnc qf.

During the wind-tunnel test, in the free-to-roll configuration, with the symmetric FSS
control law operating, the CL system was stable up to q = 290 psf, at Mach 0.48. This

augmented q represents a 23% increase over the OL symmetric qf as shown in figure 10.
This FSS control law also suppressed the flutter when a Roiling Maneuver Load

Alleviation (RMLA 8) system was tested with rapid roll maneuvers at q = 260 psf, 11%
above the OL symmetric flutter boundary. This RMLA control law used LEO and TEl
control surfaces, so the interaction with the FSS control law was minimal.

The rms deflection and deflection rate of the fight and left side TEO control surface

were computed from the data sampled at 200 Hz at each fixed-in-roll FSS test condition, ff
the value of the right and left differed, the maximum is plotted in figure 11. The maximum
rms deflection and rates were less than 0.4 degrees and 25 degrees/second, respectively.
These maximum rms deflection and rate demands of the actuators were well below the
maximum allowable values of 1 deg and 75 deg/sec as stated earlier in the paper.

The Nyquist-diagram-based gain- and phase-margins were estimated using the CPE
technique, during the experiment. These estimates were compared with corresponding

analytical quantities in figures 12 and 13, for the symmetric free-to-roll and the
antisymmetric fixed-in-roll configurations, respectively. For the symmetric, free-to-roll
configuration (figure 12), the analytical and experimental gain margins were above +_6dB

up to 270 psf. The analytical positive phase margins (at or below 7 Hz) were about 20
degrees, but the negative phase margins (at or above 12 Hz) were well above 45 degrees.
The analytical phase margins were close to experimental results up to about 270 psf.

For the antisymmetric, fixed-in-roll configuration (figure 13), the analytical negative

gain margins were only -3 dB.The analytical positive phase margins (at or below 7 Hz)
were about 20 degrees, but the negative phase margins (at or above 12 Hz) were 45

degrees. The analytical phase margins were close to the experimental data at 250 psf,
because the design model was fairly accurate at frequencies below 7 Hz (see figure 8). The

negative gain and phase margins at the high frequency end were primarily responsible for
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preservingthesystemstability.Thesourceof additionalphaselag with increasingdynamic
pressurewaspossiblydueto highly loadedactuators.Thegain losswasapparentfrom the
experimentalBodediagramshownin figure8in the8 to 12Hz frequencyrange.

CONCLUDING REMARKS

A single-input single-output control law was designed for flutter suppression using
linear quadratic Gaussian theory and involved control law order reduction, a gain root-

locus study and use of previous experimental results. The control law was digitally
implemented and tested. Simultaneous suppression of symmetric and antisymmetric flutter
modes in close proximity was demonstrated to 23% above the open-loop antisymmetric
flutter boundary when the model was in a fixed-in-roll configuration. Symmetric flutter
suppression system operating simultaneously with a rolling maneuver load alleviation

system was tested to 23% above the open-loop symmetric flutter boundary, when the
model was in a free-to-roll configuration. With this combined system, rapid roll maneuvers
were also performed at 11% above the symmetric flutter boundary.

REFERENCES

1 Perry, B. III, Cole, S. R and Miller, G. D., "A Summary of the Active Flexible Wing
Program," AIAA Paper 92-2080, April 16-17, 1992.

2 Perry, B. III, Mukhopadhyay, V., Hoadley, S. T., Cole, S. R., Buttrill, C. S. and

Houck, J. A., "Digital Implementation, Simulation and Testing of Flutter-Suppression
Systems for the Active Flexible Wing Wind-Tunnel Model," AIAA Paper 90-1074, April
1990.

3 Buttrill, C. S., Bacon, B. J., Heeg, J. and Houck, J. A., "Simulation and Model

Reduction for the AFW Program," AIAA Paper 92-2081, April, 1992.

4 Maciejowski, J. M., Multivariable Feedback Design, Addison Wesley Publishing Co.,
Great Britain, 1989.

5 Bryson, A. E., Jr, and Ho, Y. C., Applied Optimal Control, Hemisphere Publishing
Corporation, Washington, 1975.

6 Pototzky, A. S., Wieseman, C. D., Hoadley, S. T. and Mukhopadhyay, V.,
"Development and Testing of Methodology for Evaluating the Performance of Multi-

input/multi-output Digital Control Systems," AIAA Paper 90-3501, August 1990.

7 Pototzky, A. S., Wieseman, C. D., Hoadley, S. T. and Mukhopadhyay, V., "On-line
Performance of Multi-loop Digital Control Systems", Journal of Guidance, Control, and
Dynamics, Vol. 15, No. 3, May-June, 1992 (TBP).

8 Woods-Vedeler, J. A. and Pototzky, A. S., "Rolling Maneuver Load Alleviation Using
Active Controls," AIAA Paper 92-2099,April 16-17, 1992.

143



Inches

SO

6O

70

8O

9O

tO0 I

10 20 30 40 50

Inches

i

Figure I.Acceleron_tcr and conu'olsurfacelocationson AFW
wing plan form.

NO.

3

imaginary part

1O0

filter mode mode 4 _--90

: -60
D-_. p_s"suro mode 2 3 2_t

100 psf ,_.xx_ -
150 " o ,
200 "
250 "
300 "
350 "

open-loop
closed-loop

/,
mode 1

--5O

--40

--30

--20

--10

mode 3

t I I I I I
-20 -15 -10 -5 0 5 10

real part

Figure 2. Symmetric open- and closed-loop dynamic pressure
root-locus at M=0.5 (arrows indicate increasing

dynamic pressure).

144



imaginary part

100 psf
150 "

3 200 "
4 250 "

300 "350 "

x open-loop

close_-Ioop I

-20 - 15 - 10

filter mode mode 4

3
6 5

No. Dyn. pressure
1

mode 1

-100

-90

-80

-60 5 6

-50

--40

--30

-20

I
-5

real part

0 5

Figure 3. Anfisymmetric fixed-in-roll open- and closed-loop
dynamic pressure root-locus at M=0.5 (arrows
indicate increasing dynamic pressure).

I
10

right and left 6TEO _ right and left Z tip

;put, degrees _ _ sensoroutput, g
, _ .._ antialiasing L

'+'.er'"E
_ASym FSScontrol law I

ntisym FSS ]_control law

Hgure 4. Digital FSS control law implementation block
diagram.

f

agnituoe, 0_ __-" .f _,-. _ .,- j

_,_,<dm_.... _.--. "<t-....._
-2o _

100 6TEOf,%p (StSO_
Phase. 0

deg .100 _._ S,rEif_,lp ___ 'X_..
• , °TE/ZTEo_ _ r...._ t--

200 _ _ I I _ I ,,,=u LTEO- i I I ('
2 4 6 8 10 12 14 16 18 20

Frequency,Hz

Fibre 5. Bode diagram of reduced, second-order control laws.

145



imaginary pad
- 350

f

"lEO actuator pole mode 10 C]K

mode 9

x.e e---_
mode 8

x_'-,_,-------'l P'_
mode 7 mode 6

mode 5

- 250

- 200

- 150

mode 4 ( _ gain'l'3 dveCj/g
G.- ==_- _ " ..

1QI 50 mode3
ode

l I I I _ _ ..I
-20 -15 -10 -5 0 5 10

real part

Figure 6. Gain naot-tocus plot for negative feedback from _fip to

5n/o at 350 psf, antisymmetric fixed-in-nail
configuration (x = poles, o = zeros, * indicates gain
increment by 0.1).

Magnitude, 0 | .,_ -_. v

-20J--_ experiment

-30_ I l I I I I I L A

-!!!!

2 4 6 8 10 12 14 16 18 L-'U

Frequency. Hz

Figure 7. Comparison of Y.tip/ 8"rEOBode diagrams at 250 psf,
symmetric config_atiOn.

146



20

-10

-20 rime

-30 r I I I I I I I •

100 _aJysis

Phase.

-100

exp_kllenl

-200 2 4 6 8 10 12 14 16 18 20

Frequency, Hz

Figure 8. Comparison of _tip / &rEO Bode diagram at 250 psf,
antisymmetric fixed-in-roll configuration.

300 -

260

q, psf

220 -

180 ?

O

Augmented q

Symmetric q,//a_ove qf

23 % Increase

Antlsym/_

I I • I
0.3 0.4 0.5

Mach number

Figure 9, Summary of results for fixed-in-roll FSS wind-tunnel
test.

147



• [] sensor end control surface for FSS

_) Pq sensor and control surface for RMLA

300 -

260 -

q, psf

220 -

180 -

0.0

Augmented _ 23%-_Increase
Roll maneuver above qf

10%Symmetric qf I I

/
I I_ I

0.3 0.4 0.5

Mach number

Figure 10. Summary of results for free-to-roll RMLA/FSS
wind-tunnel test.

0.4 - 40

6rms 6rms

deg deg/s
0.2 - 20

0.0-- 0
0 180

I I I
220 260 300

q, psf

Figure 11. Maximum 5TEO control surface deflection and rates
demands for simultaneous symmetric and

andsymmemc flutter suppression tests.

148



10

Gain

margin, 0
dB

20 m

,,,,__k,L _o _o _ I , ,

•10 -- Dynamlcpressum, psf 2_

"2o- _...,y,. l|i *xpe*'imen t

Figure 12. Gain and phase margin comparison (symmetric).

20

15

10

Gain

rmirgln, S
dO

0

-S

-10

80

4O

Phase 2O

mari_ln,0

*4O

-SO

-8O

-100 i

!

/ ! I I I I I
200 220

2i_ 380 300.Dynamic pressure, paf .-I

r f-I anelyad8• ox_ment J

i

Figure 13. Gain and phase margin comparison (antisymmetric,
fixed-in-roll).

149




